
Motion of the reaction front in the A1B˜C reaction-diffusion system

Zbigniew Koza1 and Haim Taitelbaum2
1Institute of Theoretical Physics, University of Wrocław, 50204 Wrocław, Poland

2Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
~Received 12 April 1996!

We examine the parameters that govern the motion of the reaction front in theA1B→C reaction-diffusion
system with initially separated reactants. We claim that three different parameters determine the direction of
motion of the front at different time regions. We predict the surprising possibility oftwo switches in the
direction of motion of the front, as well as a situation of a stationary front after a single change of direction.
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The kinetic behavior of the reaction front in initially sepa-
rated reaction-diffusion systems has attracted much research
interest in the last few years@1–22#. This is mainly since,
unlike other initial conditions, the initial separation of the
reactants is an initial condition that can be experimentally
achieved@2,3,6,15,22#. Gálfi and Rácz @1# introduced a scal-
ing theory for the simpleA1B→C system, based on mean-
field equations for the local concentrationsra , rb ,

]ra
]t

5Da¹
2ra2krarb , ~1a!

]rb
]t

5Db¹
2rb2krarb, ~1b!

whereDa andDb are the diffusion coefficients andk is the
microscopic reaction rate constant. For the initially separated
system, the initial condition reads

ra~x,0!5a0H~x!, rb~x,0!5b0@12H~x!#, ~1c!

wherea0, b0 are the initial densities andH(x) is the Heavi-
side step function, so that theA’s are initially uniformly
distributed on the right side (x.0), and theB’s on the left
side (x,0) of the initial boundary.

Later on, Taitelbaumet al. @5# presented a perturbation
analysis to study the early-time regime, which is relevant to
the case of a noninstantaneous reaction~i.e., k is finite and
small!. It has been shown that there exists a series of cross-
overs from the initial to the asymptotic kinetic behavior of
the reaction front. These crossovers depend on the micro-
scopic reaction constant, as well as on the diffusion coeffi-
cients and initial densities of the two species. For example,
the global reaction rate changes dramatically from an initial
t1/2 increase to a finalt21/2 decrease, at a time proportional to
k21 @5#. In practice, these crossovers take place on a real
time scale ofhours, thus providing a useful means to extract
microscopic parameters from macroscopic experiments. The
experimental results have confirmed the general crossover
predictions, and provided more data which can be explained
on the grounds of a slightly more complicated reaction
scheme@22#.

The quantities that describe the kinetic behavior of the
reaction front are defined through the reaction term

R(x,t)5kra(x,t)rb(x,t), and are the global reaction rate,
R(t), the location of the reaction front center,xf(t), the front
width, w(t), and the production rate ofC at the center,
R(xf ,t). Among these, the reaction front center,xf(t), which
is defined as the position where the production rate ofC is
maximal, has been found to have the most interesting and
nontrivial behavior. This is reflected in thenonuniversalbe-
havior in early times, where there can be as many as four
different universality classes, and more than two regions in
time, depending on the system parametersa0, b0, Da , and
Db . In particular, it has been shown@6# that the front can
exhibit a nonmonotonic motion along the separation axis.
The switch in the direction of motion occurs in the early-
time regime, and has been obtained both theoretically and
experimentally. The question is, however, what happens to
these four universality classes when the system enters into its
asymptotic time phase? How does the front location attains
its t1/2 asymptotic behavior? What happens at the crossover
time?

In this Rapid Communication, we study in detail the
crossover behavior of the position of the reaction front cen-
ter. We do so by examining the conditions which govern the
direction of motion ofxf , and show that different parameters
affect this motion in different time regimes. In particular, we
show that there exists a surprising possibility of asecond
change of direction, and we define the appropriate conditions
for this phenomenon.

In the pioneering paper by Ga´lfi and Rácz @1#, they ob-
tained the asymptotic time behaviorxf ; t1/2 which follows
intuitively from the diffusive nature of the reaction-diffusion
system. They also pointed out that in the symmetric system,
i.e., a05b0 ~assuming thatDa5Db), the front does not
move andxf50 for all time t. In a later publication, Jiang
and Ebner@4# showed that the more general condition for the
center of the front to be stationary is

a0ADa5b0ADb. ~2!

This is based on the observation that in the long-time limit
the reaction zone is fed by the diffusive fluxes ofA andB,
which at timet are given bya0ADa /t andb0ADb /t, respec-
tively. Equality of these fluxes would result in a stationary
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front, while unequal fluxes will cause a motion of the
front from the side in which the species’ flux is bigger to-
wards the side which has the smaller flux. Jiang and
Ebner support their findings by numerical calculations. The
validity of ~2! has been recently confirmed analytically by
Koza @21#.

These arguments pertain to the long-time limit only, or,
equivalently, to the case of instantaneous reaction~infinite
k). Whenk is finite, the reactants do not necessarily react on
each encounter. As a result, they have the possibility of dif-
fusing through one another, until they become effectively
mixed. This leads to an early-time kinetic behavior which is
characterized by completely different properties@5,6#. In this
region one can treat the little reaction as a perturbation rela-
tive to the diffusion, using a perturbation parametere, which
represents a small dimensionless reaction constant, and is
given by

e5
k

Aa0b0DaDb

. ~3!

The general expression forxf in the early-time region has
been found by Taitelbaumet al. @6# to be given by

xf~ t !.
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~4!

where

D5ADa

Db
, r5Aa0

b0
, ~5!

and M and N are time-independent constants, which de-
pend in a nontrivial manner onD and r . A detailed exami-
nation of the expression~4! as a function ofD andr results
in four different universality classes in the early-time regime
@6,14#.

To the lowest order ine one obtainsxf ; t1/2, but
this is provided thatDÞ1. WhenD51 ~andrÞ1), the first
term in the numerator vanishes, the front is stationary
to the lowest order, and when the next order term becomes
significant, one obtainsxf ; et3/2. If D51 and r51, then
M vanishes as it should, andxf50 for all t, due to sym-
metry.

The most interesting behavior of the functionxf(t) is that
it can have an extremum point with the physical implication
of a nonmonotonicmotion along the separation axis. The
time t* , for which xf(t) has such an extremum point, de-
pends in a complicated manner onD and r , through rather
cumbersome expressions forM andN. The condition for a
positive t* , and thus for a physical meaning of switching
directions, is$D.1 andr,1%, or, equivalently,$D,1 and
r.1%, provided that the value ofD is relatively close to 1, as
is discussed in detail in@6#. This result is understood as
follows. Suppose, e.g., thatDa.Db and a0,b0. At very
early times diffusion effects are dominant, and the direction
of motion is determined by the penetration of theA species
to the left,B side of the system. Later on, the reaction comes
into play, and the species with higher concentration,B, will
govern the direction of motion, which will be towards the

right, A side. Note that this result involves both two lowest
orders ine, so one expects the transition of the front from
one direction to the other to occur at a rate proportional to
t3/2. Experimental results reported in@6# confirm the non-
monotonic motion forD51.14 andr50.26.

ForD.1 andr.1 ~or both less than 1!, Eq. ~4! predicts
thatxf is monotonic in time, where at the very earliest times
xf ; t1/2, and at later timesxf ; t3/2, corresponding to the
order of the perturbation expansion.

Consider now the most interesting case of the non-
monotonic behavior in the early-time regime, withD.1
and r,1 ~or vice versa!. If these parameters fulfill also the
relation r 2D51, then due to~2! we can expect the front
to become asymptotically~as t→`) stationary. So is it pos-
sible that the front would start to move, change its direction,
and finally stop? If not, will it continue in the same
direction?

In what follows we propose that three different
parameters govern the direction of motion as time evolves.
Based on the above discussion of the nonmonotonic case, it
is reasonable to assume that at the very earliest times the
direction depends onD only, where later, still within the
short-time regime, it isr that determines the direction. In the
asymptotic time regime we suggest that the dominant
parameter is the combinationr 2D, following from Eq. ~2!.
In each time region, if the relevant parameter of this re-
gion (D, r , or r 2D) is greater than 1, the front will move
from theA side to theB side. If it is less than 1, the motion
will be in the opposite direction, from theB side to theA
side, and if it is equal to 1, the front will be stationary
or temporarily stationary. Thus, various combinations of
these parameters are expected to yield rich kinetic behavior
of the reaction front, in particular unusual nonmonotonic
properties.

We have performed numerical calculations based on the
standard, finite-difference method, to check our claim. In
these computations we have used the following method to
calculate the location ofxf . First we find the pointxm of the
finite-difference grid at which the production rateR attains
the maximal value. Then we use five points,xm22, . . . ,
xm12, to find the quadratic functiony(x)5ax21bx1c that
would minimizex25( i [R(xi)2y(xi)]

2, where the sum is to
be taken overi5m22, . . . ,m12. Finally we estimatexf as
the point maximizing the value ofy. This form of interpola-
tion enabled us to investigate the evolution ofxf very pre-
cisely. The calculations have been performed for a wide
range of the system parameters. The numerical results con-
firm our claim thatD, r , andr 2D determine the direction of
motion of the front in the short, intermediate, and asymptotic
time regions, respectively. In what follows we present the
exotic consequences of this general description.

In Fig. 1 we show our results for a system whose
parameters are chosen so thatD,1, r.1, for various
possibilities ofr 2D. The specific values arek50.01, initial
densitiesa050.2,b050.1 (r51.414), diffusion coefficients
Da50.1 and various Db50.38, 0.4, 0.42, so that
D50.513, 0.5, 0.488 and r 2D51.026, 1, 0.976,
respectively. SinceD,1 and r.1, the directions of
the front motion will beB→A and thenA→B in the short-
time regime. After the asymptotic time region sets in, we
have all three possibilities: continuation in theA→B
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direction ~for r 2D.1); approaching a stationary position
~for r 2D51); and the most surprising phenomenon—asec-
ond switch toB→A ~for r 2D,1), which is reflected by a
second extremum point in the curve forxf(t). All these
three asymptotic curves belong to the same universality
class, and exhibit an asymptotict1/2 behavior with different
prefactors.

In Fig. 2 we show similar data forD.1, r,1 and the
three possibilities forr 2D. The specific parameters are
k50.002, diffusion constants Da50.4, Db50.1
(D52),initial concentrationsb050.5 and variousa050.24,
0.25, 0.26 (r50.69, 0.707, 0.721!, so that r 2D50.96, 1,
1.04, respectively. The directions of motion areA→B
(D.1), B→A (r,1), and then according to the value of
r 2D. It can be seen that at the earliest times the three curves
for the various values ofr are indistinguishable, which con-
firms that at this region the behavior depends onD only. As
is evident from the figures, the starting of the asymptotic
region occurs at a time which is about an order of magnitude
larger than the first switch of direction. The latter occurs at a
time of orderk21, which is the typical time for the beginning
of the asymptotic region in systems with a monotonic motion
of the front.

It is interesting to note that other relevant quantities in this
reaction-diffusion system with initially separated reactants,
such as the local or global production rates or the width of
the reaction zone, do not exhibit such a rich spatiotemporal
behavior. They do cross over from short-time to asymptotic

behavior@14#, but do not possess any nonuniversal or non-
monotonic properties as doesxf , the location of the reaction
front center.

The significance of these results from the experimental
point of view is that they can be used to control the motion
of the front. Generally one cannot do much to change the
values of the diffusion coefficients of the reactants which are
determined by the type of solution in which the reaction
takes place@3#. However, the initial densities can be con-
trolled more easily, allowing one to obtain some preset val-
ues for r and particularlyr 2D, in order, for example, to
stabilize the front motion, or to have it moving in any pre-
ferred direction. In the experiment described by Taitelbaum
et al. @6#, the parameters wereD51.14 andr50.26, so that
r 2D50.08, and indeed only one switch of direction has been
observed, in agreement with the above conclusions. It re-
mains an experimental challenge to obtain the second switch
or the stationary state as well.

In summary, we have presented a surprising behavior of
the reaction front in the initially separatedA1B→C
reaction-diffusion system, which is the possibility oftwo di-
rection changes during its motion, as well as a stationary
front after a single switch of direction. These phenomena
result from the fact that three different parameters determine
the direction of motion of the reaction front in different time
regimes.

We acknowledge support by the Polish UWR Grant
No. 2115/W/IFT/95~Z.K.! and by the Israel Science Foun-
dation ~H.T.!. Z.K. thanks L.A. Turski for stimulating dis-
cussions.

FIG. 1. The reaction front centerxf as a function of time as
obtained numerically for fixed initial densities~r.1! and various
values ofD(D,1! andr 2D. Parameter values arek50.01,densi-
ties a050.2, b050.1 (r51.414), diffusion constants
Da50.1 andDb as is indicated in the figure (D,1!. The initial
motion from left (B) to right (A) is reflected in an initialincrease
of xf(t).

FIG. 2. The reaction front centerxf as a function of time as
obtained numerically for fixed diffusion constants (D.1) and vari-
ous values ofr (r,1) andr 2D. Parameter values arek50.002,
diffusion constantsDa50.4,Db50.1 (D52), densititesb050.5
anda0 as is indicated in the figure~r,1!. The initial motion from
right (A) to left (B) is reflected in an initialdecreaseof xf(t).
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